2.2.kmem_cache_alloc

struct kmem_cache *kmem_cache_create(const char *name, size_t size,

size_t align, unsigned long flags,

void (*ctor)(void*, struct kmem_cache *, unsigned long),

void (*dtor)(void*, struct kmem_cache *, unsigned long))

void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)

kmem_cache_create/ kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从 该高速缓存区域中获取新的内存块 kmem_cache_alloc一次能分配的最大内存由mm/slab.c文件中的MAX_OBJ_ORDER宏 定义,在默认的2.6.18内核版本中,该宏定义为5, 于是一次最多能申请1<<5 * 4KB也就是128KB的 连续物理内存分析内核源码发现,kmem_cache_create函数的size参数大于128KB时会调用BUG()测试结果验证了分析结果,用kmem_cache_create分 配超过128KB的内存时使内核崩溃。

2.3.kmalloc

void *kmalloc(size_t size, gfp_t flags)

kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函 数来实现kmalloc一次最多能申请的内存大小由include/linux/Kmalloc_size.h的 内容来决定,在默认的2.6.18内核版本中,kmalloc一 次最多能申请大小为131702B也就是128KB字 节的连续物理内存测试结果表明,如果试图用kmalloc函数分配大于128KB的内存,编译不能通过。

另一个常见的内存分配函数 kzalloc效果等同于先是用kmalloc()申请空间,然后用memset()来初始化,所有申请的元素都被初始化为0.

/**

* kzalloc - allocate memory. The memory is set to zero.

* @size: how many bytes of memory are required.

* @flags: the type of memory to allocate (see kmalloc).

*/

staticinlinevoid*kzalloc(size_t size, gfp_t flags)

{

returnkmalloc(size, flags | __GFP_ZERO);

}

kzalloc 函数是带参数调用kmalloc函数,添加的参数是或了标志位__GFP_ZERO

2.4.vmalloc

void *vmalloc(unsigned long size)

前面几种内存分配方式都是物理连续的,能保证较低的平均访问时间但是在某些场合中,对内存区的请求不是很频繁,较高的内存访问时间也 可以接受,这是就可以分配一段线性连续,物理不连续的地址,带来的好处是一次可以分配较大块的内存图3-1表 示的是vmalloc分配的内存使用的地址范围vmalloc对 一次能分配的内存大小没有明确限制出于性能考虑,应谨慎使用vmalloc函数在测试过程中, 最大能一次分配1GB的空间。

Linux内核部分内存分布

2.5.dma_alloc_coherent

void *dma_alloc_coherent(struct device *dev, size_t size,ma_addr_t *dma_handle, gfp_t gfp)

DMA是一种硬件机制,允许外围设备和主存之间直接传输IO数据,而不需要CPU的参与,使用DMA机制能大幅提高与设备通信的 吞吐量DMA操作中,涉及到CPU高速缓 存和对应的内存数据一致性的问题,必须保证两者的数据一致,在x86_64体系结构中,硬件已经很 好的解决了这个问题, dma_alloc_coherent和__get_free_pages函数实现差别不大,前者实际是调用__alloc_pages函 数来分配内存,因此一次分配内存的大小限制和后者一样__get_free_pages分配的内 存同样可以用于DMA操作测试结果证明,dma_alloc_coherent函 数一次能分配的最大内存也为4M。

2.6.ioremap

void * ioremap (unsigned long offset, unsigned long size)

ioremap是一种更直接的内存“分配”方式,使用时直接指定物理起始地址和需要分配内存的大小,然后将该段 物理地址映射到内核地址空间ioremap用到的物理地址空间都是事先确定的,和上面的几种内存 分配方式并不太一样,并不是分配一段新的物理内存ioremap多用于设备驱动,可以让CPU直接访问外部设备的IO空间ioremap能映射的内存由原有的物理内存空间决定,所以没有进行测试。

2.7.Boot Memory

如果要分配大量的连续物理内存,上述的分配函数都不能满足,就只能用比较特殊的方式,在Linux内 核引导阶段来预留部分内存

2.7.1.在内核引导时分配内存

void* alloc_bootmem(unsigned long size)

可以在Linux内核引导过程中绕过伙伴系统来分配大块内存使用方法是在Linux内核引导时,调用mem_init函数之前 用alloc_bootmem函数申请指定大小的内存如果需要在其他地方调用这块内存,可以将alloc_bootmem返回的内存首地址通过EXPORT_SYMBOL导 出,然后就可以使用这块内存了这种内存分配方式的缺点是,申请内存的代码必须在链接到内核中的代码里才能使用,因此必须重新编译内核,而且内存管理系统 看不到这部分内存,需要用户自行管理测试结果表明,重新编译内核后重启,能够访问引导时分配的内存块。

2.7.2.通过内核引导参数预留顶部内存

在Linux内核引导时,传入参数“mem=size”保留顶部的内存区间比如系统有256MB内 存,参数“mem=248M”会预留顶部的8MB内存,进入系统后可以调用ioremap(0xF800000,0x800000)来申请这段内存。

更多推荐

嵌入式linux 内存分配,嵌入式linux内核中常见内存分配