目录

[隐藏]
  • 1
  • 2 DMA控制器硬件结构
    • 2.1 DMA通道使用的地址
    • 2.2 DMA操作函数
    • 2.3 DMA映射
      • 2.3.1 (1)建立一致 DMA 映射
      • 2.3.2 (2)建立流式 DMA 映射
      • 2.3.3 (3)分散/集中映射
    • 2.4 DMA池
    • 2.5 一个简单的使用DMA 例子


DMA控制器硬件结构

DMA允许外围设备和主内存之间直接传输 I/O 数据, DMA 依赖于系统。每一种体系结构DMA传输不同,编程接口也不同。

数据传输可以以两种方式触发:一种软件请求数据,另一种由硬件异步传输。

在第一种情况下,调用的步骤可以概括如下(以read为例):

(1)在进程调用 read 时,驱动程序的方法分配一个 DMA 缓冲区,随后指示硬件传送它的数据。进程进入睡眠。

(2)硬件将数据写入 DMA 缓冲区并在完成时产生一个中断。

(3)中断处理程序获得输入数据,应答中断,最后唤醒进程,该进程现在可以读取数据了。

第二种情形是在 DMA 被异步使用时发生的。以数据采集设备为例:

(1)硬件发出中断来通知新的数据已经到达。

(2)中断处理程序分配一个DMA缓冲区。

(3)外围设备将数据写入缓冲区,然后在完成时发出另一个中断。

(4)处理程序利用DMA分发新的数据,唤醒任何相关进程。

网卡传输也是如此,网卡有一个循环缓冲区(通常叫做 DMA 环形缓冲区)建立在与处理器共享的内存中。每一个输入数据包被放置在环形缓冲区中下一个可用缓冲区,并且发出中断。然后驱动程序将网络数据包传给内核的其它部分处理,并在环形缓冲区中放置一个新的 DMA 缓冲区。

驱动程序在初始化时分配DMA缓冲区,并使用它们直到停止运行。

DMA控制器依赖于平台硬件,这里只对i386的8237 DMA控制器做简单的说明,它有两个控制器,8个通道,具体说明如下:

控制器1: 通道0-3,字节操作, 端口为 00-1F

控制器2: 通道 4-7, 字操作, 端口咪 C0-DF

- 所有寄存器是8 bit,与传输大小无关。

  - 通道 4 被用来将控制器1与控制器2级联起来。

- 通道 0-3 是字节操作,地址/计数都是字节的。

- 通道 5-7 是字操作,地址/计数都是以字为单位的。

- 传输器对于(0-3通道)必须不超过64K的物理边界,对于5-7必须不超过128K边界。

- 对于5-7通道page registers 不用数据 bit 0, 代表128K页

- 对于0-3通道page registers 使用 bit 0, 表示 64K页

DMA 传输器限制在低于16M物理内存里。装入寄存器的地址必须是物理地址,而不是逻辑地址。

 对于0-3通道来说地址对寄存器的映射如下:
A23 ... A16 A15 ... A8  A7 ... A0    (物理地址)
     |  ...  |   |  ... |   |  ... |
     |  ...  |   |  ... |   |  ... |
     |  ...  |   |  ... |   |  ... |
    P7  ...  P0  A7 ... A0  A7 ... A0   
  |    Page    | Addr MSB | Addr LSB |   (DMA 地址寄存器)

对于5-7通道来说地址对寄存器的映射如下:
A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (物理地址)
    |  ...  |   \   \   ... \  \  \  ... \  \
    |  ...  |    \   \   ... \  \  \  ... \  (没用)
    |  ...  |     \   \   ... \  \  \  ... \
   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0   
| Page | Addr MSB | Addr LSB | (DMA 地址寄存器)

通道 5-7 传输以字为单位, 地址和计数都必须是以字对齐的。

在include/asm-i386/dma.h中有i386平台的8237 DMA控制器的各处寄存器的地址及寄存器的定义,这里只对控制寄存器加以说明:

DMA Channel Control/Status Register (DCSRX)

第31位 表明是否开始

第30位 选定Descriptor和Non-Descriptor模式

第29位 判断有无中断

第8位 请求处理 (Request Pending)

第3位 Channel是否运行

第2位 当前数据交换是否完成

第1位 是否由Descriptor产生中断

第0位 是否由总线错误引起中断

DMA通道使用的地址

DMA通道用dma_chan结构数组表示,这个结构在kernel/dma.c中,列出如下:
struct dma_chan {
	int  lock;
	const char *device_id;
};
 
static struct dma_chan dma_chan_busy[MAX_DMA_CHANNELS] = {
	[4] = { 1, "cascade" },
};

如果dma_chan_busy[n].lock != 0表示忙,DMA0保留为DRAM更新用,DMA4用作级联。DMA 缓冲区的主要问题是,当它大于一页时,它必须占据物理内存中的连续页。

由于DMA需要连续的内存,因而在引导时分配内存或者为缓冲区保留物理 RAM 的顶部。在引导时给内核传递一个"mem="参数可以保留 RAM 的顶部。例如,如果系统有 32MB 内存,参数"mem=31M"阻止内核使用最顶部的一兆字节。稍后,模块可以使用下面的代码来访问这些保留的内存:

dmabuf = ioremap( 0x1F00000 /* 31M */, 0x100000 /* 1M */);

分配 DMA 空间的方法,代码调用 kmalloc(GFP_ATOMIC) 直到失败为止,然后它等待内核释放若干页面,接下来再一次进行分配。最终会发现由连续页面组成的DMA 缓冲区的出现。

一个使用 DMA 的设备驱动程序通常会与连接到接口总线上的硬件通讯,这些硬件使用物理地址,而程序代码使用虚拟地址。基于 DMA 的硬件使用总线地址而不是物理地址,有时,接口总线是通过将 I/O 地址映射到不同物理地址的桥接电路连接的。甚至某些系统有一个页面映射方案,能够使任意页面在外围总线上表现为连续的。

当驱动程序需要向一个 I/O 设备(例如扩展板或者DMA控制器)发送地址信息时,必须使用 virt_to_bus 转换,在接受到来自连接到总线上硬件的地址信息时,必须使用 bus_to_virt 了。

DMA操作函数

因为 DMA 控制器是一个系统级的资源,所以内核协助处理这一资源。内核使用 DMA 注册表为 DMA 通道提供了请求/释放机制,并且提供了一组函数在 DMA 控制器中配置通道信息。

DMA 控制器使用函数request_dma和free_dma来获取和释放 DMA 通道的所有权,请求 DMA 通道应在请求了中断线之后,并且在释放中断线之前释放它。每一个使用 DMA 的设备也必须使用中断信号线,否则就无法发出数据传输完成的通知。这两个函数的声明列出如下(在kernel/dma.c中):
int request_dma(unsigned int channel, const char *name); 
void free_dma(unsigned int channel);

DMA 控制器被dma_spin_lock 的自旋锁所保护。使用函数claim_dma_lock和release_dma_lock对获得和释放自旋锁。这两个函数的声明列出如下(在kernel/dma.c中):

unsigned long claim_dma_lock(); 获取 DMA 自旋锁,该函数会阻塞本地处理器上的中断,因此,其返回值是"标志"值,在重新打开中断时必须使用该值。

void release_dma_lock(unsigned long flags); 释放 DMA 自旋锁,并且恢复以前的中断状态。

DMA 控制器的控制设置信息由RAM 地址、传输的数据(以字节或字为单位),以及传输的方向三部分组成。下面是i386平台的8237 DMA控制器的操作函数说明(在include/asm-i386/dma.h中),使用这些函数设置DMA控制器时,应该持有自旋锁。但在驱动程序做I/O 操作时,不能持有自旋锁。

void set_dma_mode(unsigned int channel, char mode); 该函数指出通道从设备读(DMA_MODE_WRITE)或写(DMA_MODE_READ)数据方式,当mode设置为 DMA_MODE_CASCADE时,表示释放对总线的控制。

void set_dma_addr(unsigned int channel, unsigned int addr); 函数给 DMA 缓冲区的地址赋值。该函数将 addr 的最低 24 位存储到控制器中。参数 addr 是总线地址。

void set_dma_count(unsigned int channel, unsigned int count);该函数对传输的字节数赋值。参数 count 也代表 16 位通道的字节数,在此情况下,这个数字必须是偶数。

除了这些操作函数外,还有些对DMA状态进行控制的工具函数:

void disable_dma(unsigned int channel); 该函数设置禁止使用DMA 通道。这应该在配置 DMA 控制器之前设置。

void enable_dma(unsigned int channel); 在DMA 通道中包含了合法的数据时,该函数激活DMA 控制器。

int get_dma_residue(unsigned int channel); 该函数查询一个 DMA 传输还有多少字节还没传输完。函数返回没传完的字节数。当传输成功时,函数返回值是0。

void clear_dma_ff(unsigned int channel) 该函数清除 DMA 触发器(flip-flop),该触发器用来控制对 16 位寄存器的访问。可以通过两个连续的 8 位操作来访问这些寄存器,触发器被清除时用来选择低字节,触发器被置位时用来选择高字节。在传输 8 位后,触发器会自动反转;在访问 DMA 寄存器之前,程序员必须清除触发器(将它设置为某个已知状态)。

DMA映射

一个DMA映射就是分配一个 DMA 缓冲区并为该缓冲区生成一个能够被设备访问的地址的组合操作。一般情况下,简单地调用函数virt_to_bus 就设备总线上的地址,但有些硬件映射寄存器也被设置在总线硬件中。映射寄存器(mapping register)是一个类似于外围设备的虚拟内存等价物。在使用这些寄存器的系统上,外围设备有一个相对较小的、专用的地址区段,可以在此区段执行 DMA。通过映射寄存器,这些地址被重映射到系统 RAM。映射寄存器具有一些好的特性,包括使分散的页面在设备地址空间看起来是连续的。但不是所有的体系结构都有映射寄存器,特别地,PC 平台没有映射寄存器。

在某些情况下,为设备设置有用的地址也意味着需要构造一个反弹(bounce)缓冲区。例如,当驱动程序试图在一个不能被外围设备访问的地址(一个高端内存地址)上执行 DMA 时,反弹缓冲区被创建。然后,按照需要,数据被复制到反弹缓冲区,或者从反弹缓冲区复制。

根据 DMA 缓冲区期望保留的时间长短,PCI 代码区分两种类型的 DMA 映射:

  • 一致 DMA 映射 它们存在于驱动程序的生命周期内。一个被一致映射的缓冲区必须同时可被 CPU 和外围设备访问,这个缓冲区被处理器写时,可立即被设备读取而没有cache效应,反之亦然,使用函数pci_alloc_consistent建立一致映射。
  • 流式 DMA映射 流式DMA映射是为单个操作进行的设置。它映射处理器虚拟空间的一块地址,以致它能被设备访问。应尽可能使用流式映射,而不是一致映射。这是因为在支持一致映射的系统上,每个 DMA 映射会使用总线上一个或多个映射寄存器。具有较长生命周期的一致映射,会独占这些寄存器很长时间――即使它们没有被使用。使用函数dma_map_single建立流式映射。

(1)建立一致 DMA 映射

函数pci_alloc_consistent处理缓冲区的分配和映射,函数分析如下(在include/asm-generic/pci-dma-compat.h中):
static inline void *pci_alloc_consistent(struct pci_dev *hwdev, 
                 size_t size, dma_addr_t *dma_handle)
{
	return dma_alloc_coherent(hwdev == NULL ? NULL : &hwdev->dev, 
                       size, dma_handle, GFP_ATOMIC);
}

结构dma_coherent_mem定义了DMA一致性映射的内存的地址、大小和标识等。结构dma_coherent_mem列出如下(在arch/i386/kernel/pci-dma.c中):
struct dma_coherent_mem {

void *virt_base; u32 device_base; int size; int flags; unsigned long *bitmap;

};

函数dma_alloc_coherent分配size字节的区域的一致内存,得到的dma_handle是指向分配的区域的地址指针,这个地址作为区域的物理基地址。dma_handle是与总线一样的位宽的无符号整数。 函数dma_alloc_coherent分析如下(在arch/i386/kernel/pci-dma.c中):
void *dma_alloc_coherent(struct device *dev, size_t size,
			   dma_addr_t *dma_handle, int gfp)
{
	void *ret;
  //若是设备,得到设备的dma内存区域,即mem= dev->dma_mem
	struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
	int order = get_order(size);//将size转换成order,即 
	//忽略特定的区域,因而忽略这两个标识
	gfp &= ~(__GFP_DMA | __GFP_HIGHMEM);
 
	if (mem) {//设备的DMA映射,mem= dev->dma_mem
    //找到mem对应的页
		int page = bitmap_find_free_region(mem->bitmap, mem->size,
						     order);
		if (page >= 0) {
			*dma_handle = mem->device_base + (page << PAGE_SHIFT);
			ret = mem->virt_base + (page << PAGE_SHIFT);
			memset(ret, 0, size);
			return ret;
		}
		if (mem->flags & DMA_MEMORY_EXCLUSIVE)
			return NULL;
	}
 
  //不是设备的DMA映射
	if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
		gfp |= GFP_DMA;
  //分配空闲页
	ret = (void *)__get_free_pages(gfp, order);
 
	if (ret != NULL) {
		memset(ret, 0, size);//清0
		*dma_handle = virt_to_phys(ret);//得到物理地址
	}
	return ret;
}

当不再需要缓冲区时(通常在模块卸载时),应该调用函数 pci_free_consitent 将它返还给系统。

(2)建立流式 DMA 映射

在流式 DMA 映射的操作中,缓冲区传送方向应匹配于映射时给定的方向值。缓冲区被映射后,它就属于设备而不再属于处理器了。在缓冲区调用函数pci_unmap_single撤销映射之前,驱动程序不应该触及其内容。

在缓冲区为 DMA 映射时,内核必须确保缓冲区中所有的数据已经被实际写到内存。可能有些数据还会保留在处理器的高速缓冲存储器中,因此必须显式刷新。在刷新之后,由处理器写入缓冲区的数据对设备来说也许是不可见的。

如果欲映射的缓冲区位于设备不能访问的内存区段时,某些体系结构仅仅会操作失败,而其它的体系结构会创建一个反弹缓冲区。反弹缓冲区是被设备访问的独立内存区域,反弹缓冲区复制原始缓冲区的内容。

函数pci_map_single映射单个用于传送的缓冲区,返回值是可以传递给设备的总线地址,如果出错的话就为 NULL。一旦传送完成,应该使用函数pci_unmap_single 删除映射。其中,参数direction为传输的方向,取值如下:

PCI_DMA_TODEVICE 数据被发送到设备。

PCI_DMA_FROMDEVICE如果数据将发送到 CPU。

PCI_DMA_BIDIRECTIONAL数据进行两个方向的移动。

PCI_DMA_NONE 这个符号只是为帮助调试而提供。

函数pci_map_single分析如下(在arch/i386/kernel/pci-dma.c中):
static inline dma_addr_t pci_map_single(struct pci_dev *hwdev, 
                void *ptr, size_t size, int direction)
{
	return dma_map_single(hwdev == NULL ? NULL : &hwdev->dev, ptr, size, 
                                      (enum ma_data_direction)direction);
}

函数dma_map_single映射一块处理器虚拟内存,这块虚拟内存能被设备访问,返回内存的物理地址,函数dma_map_single分析如下(在include/asm-i386/dma-mapping.h中):
static inline dma_addr_t dma_map_single(struct device *dev, void *ptr,
                        size_t size, enum dma_data_direction direction)

{BUG_ON(direction == DMA_NONE);  //可能有些数据还会保留在处理器的高速缓冲存储器中,因此必须显式刷新flush_write_buffers();return virt_to_phys(ptr); //虚拟地址转化为物理地址

}

(3)分散/集中映射

分散/集中映射是流式 DMA 映射的一个特例。它将几个缓冲区集中到一起进行一次映射,并在一个 DMA 操作中传送所有数据。这些分散的缓冲区由分散表结构scatterlist来描述,多个分散的缓冲区的分散表结构组成缓冲区的struct scatterlist数组。

分散表结构列出如下(在include/asm-i386/scatterlist.h):
struct scatterlist {
    struct page		*page;
    unsigned int	offset;
    dma_addr_t		dma_address;  //用在分散/集中操作中的缓冲区地址
    unsigned int	length;//该缓冲区的长度
};

每一个缓冲区的地址和长度会被存储在 struct scatterlist 项中,但在不同的体系结构中它们在结构中的位置是不同的。下面的两个宏定义来解决平台移植性问题,这些宏定义应该在一个pci_map_sg 被调用后使用:
//从该分散表项中返回总线地址

#define sg_dma_address(sg) �sg)->dma_address) //返回该缓冲区的长度 

#define sg_dma_len(sg) �sg)->length)

函数pci_map_sg完成分散/集中映射,其返回值是要传送的 DMA 缓冲区数;它可能会小于 nents(也就是传入的分散表项的数量),因为可能有的缓冲区地址上是相邻的。一旦传输完成,分散/集中映射通过调用函数pci_unmap_sg 来撤销映射。 函数pci_map_sg分析如下(在include/asm-generic/pci-dma-compat.h中):
static inline int pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg,
	                            int nents, int direction)
{
	return dma_map_sg(hwdev == NULL ? NULL : &hwdev->dev, sg, nents, 
(enum dma_data_direction)direction);
}
include/asm-i386/dma-mapping.h
static inline int dma_map_sg(struct device *dev, struct scatterlist *sg, 
int nents, enum dma_data_direction direction)
{
	int i;
 
	BUG_ON(direction == DMA_NONE);
 
	for (i = 0; i < nents; i++ ) {
		BUG_ON(!sg[i].page);
    //将页及页偏移地址转化为物理地址
		sg[i].dma_address = page_to_phys(sg[i].page) + sg[i].offset;
	}
    //可能有些数据还会保留在处理器的高速缓冲存储器中,因此必须显式刷新
	flush_write_buffers();
	return nents;
}

DMA池

许多驱动程序需要又多又小的一致映射内存区域给DMA描述子或I/O缓存buffer,这使用DMA池比用dma_alloc_coherent分配的一页或多页内存区域好,DMA池用函数dma_pool_create创建,用函数dma_pool_alloc从DMA池中分配一块一致内存,用函数dmp_pool_free放内存回到DMA池中,使用函数dma_pool_destory释放DMA池的资源。

结构dma_pool是DMA池描述结构,列出如下:
struct dma_pool {	/* the pool */
	struct list_head	page_list;//页链表
	spinlock_t		lock;
	size_t			blocks_per_page; //每页的块数
	size_t			size;     //DMA池里的一致内存块的大小
	struct device		*dev; //将做DMA的设备
	size_t			allocation; //分配的没有跨越边界的块数,是size的整数倍
	char			name [32]; //池的名字
	wait_queue_head_t	waitq;  //等待队列
	struct list_head	pools;
};

函数dma_pool_create给DMA创建一个一致内存块池,其参数name是DMA池的名字,用于诊断用,参数dev是将做DMA的设备,参数size是DMA池里的块的大小,参数align是块的对齐要求,是2的幂,参数allocation返回没有跨越边界的块数(或0)。

函数dma_pool_create返回创建的带有要求字符串的DMA池,若创建失败返回null。对被给的DMA池,函数dma_pool_alloc被用来分配内存,这些内存都是一致DMA映射,可被设备访问,且没有使用缓存刷新机制,因为对齐原因,分配的块的实际尺寸比请求的大。如果分配非0的内存,从函数dma_pool_alloc返回的对象将不跨越size边界(如不跨越4K字节边界)。这对在个体的DMA传输上有地址限制的设备来说是有利的。

  函数dma_pool_create分析如下(在drivers/base/dmapool.c中):
struct dma_pool *dma_pool_create (const char *name, struct device *dev,
	          size_t size, size_t align, size_t allocation)
{
	struct dma_pool		*retval;
 
	if (align == 0)
		align = 1;
	if (size == 0)
		return NULL;
	else if (size < align)
		size = align;
	else if ((size % align) != 0) {//对齐处理
		size += align + 1;
		size &= ~(align - 1);
	}
  //如果一致内存块比页大,是分配为一致内存块大小,否则,分配为页大小
	if (allocation == 0) {
		if (PAGE_SIZE < size)//页比一致内存块小
			allocation = size;
		else
			allocation = PAGE_SIZE;//页大小
		// FIXME: round up for less fragmentation
	} else if (allocation < size)
		return NULL;
  //分配dma_pool结构对象空间
	if (!(retval = kmalloc (sizeof *retval, SLAB_KERNEL)))
		return retval;
 
	strlcpy (retval->name, name, sizeof retval->name);
 
	retval->dev = dev;
  //初始化dma_pool结构对象retval
	INIT_LIST_HEAD (&retval->page_list);//初始化页链表
	spin_lock_init (&retval->lock);
	retval->size = size;
	retval->allocation = allocation;
	retval->blocks_per_page = allocation / size;
	init_waitqueue_head (&retval->waitq);//初始化等待队列
 
	if (dev) {//设备存在时
		down (&pools_lock);
		if (list_empty (&dev->dma_pools))
      //给设备创建sysfs文件系统属性文件
			device_create_file (dev, &dev_attr_pools);
		/* note:  not currently insisting "name" be unique */
		list_add (&retval->pools, &dev->dma_pools); //将DMA池加到dev中
		up (&pools_lock);
	} else
		INIT_LIST_HEAD (&retval->pools);
 
	return retval;
}

函数dma_pool_alloc从DMA池中分配一块一致内存,其参数pool是将产生块的DMA池,参数mem_flags是GFP_*位掩码,参数handle是指向块的DMA地址,函数dma_pool_alloc返回当前没用的块的内核虚拟地址,并通过handle给出它的DMA地址,如果内存块不能被分配,返回null。

函数dma_pool_alloc包裹了dma_alloc_coherent页分配器,这样小块更容易被总线的主控制器使用。这可能共享slab分配器的内容。

函数dma_pool_alloc分析如下(在drivers/base/dmapool.c中):
void *dma_pool_alloc (struct dma_pool *pool, int mem_flags, dma_addr_t *handle)
{
	unsigned long		flags;
	struct dma_page		*page;
	int			map, block;
	size_t			offset;
	void			*retval;
 
restart:
	spin_lock_irqsave (&pool->lock, flags);
	list_for_each_entry(page, &pool->page_list, page_list) {
		int		i;
		/* only cachable accesses here ... */
        //遍历一页的每块,而每块又以32字节递增
		for (map = 0, i = 0;
				i < pool->blocks_per_page; //每页的块数
				i += BITS_PER_LONG, map++) { // BITS_PER_LONG定义为32
			if (page->bitmap [map] == 0)
				continue;
			block = ffz (~ page->bitmap [map]);//找出第一个0
			if ((i + block) < pool->blocks_per_page) {
				clear_bit (block, &page->bitmap [map]);
       //得到相对于页边界的偏移
				offset = (BITS_PER_LONG * map) + block;
				offset *= pool->size;
				goto ready;
			}
		}
	}
//给DMA池分配dma_page结构空间,加入到pool->page_list链表,
//并作DMA一致映射,它包括分配给DMA池一页。
// SLAB_ATOMIC表示调用 kmalloc(GFP_ATOMIC) 直到失败为止,
//然后它等待内核释放若干页面,接下来再一次进行分配。
	if (!(page = pool_alloc_page (pool, SLAB_ATOMIC))) {
		if (mem_flags & __GFP_WAIT) {
			DECLARE_WAITQUEUE (wait, current);
 
			current->state = TASK_INTERRUPTIBLE;
			add_wait_queue (&pool->waitq, &wait);
			spin_unlock_irqrestore (&pool->lock, flags);
 
			schedule_timeout (POOL_TIMEOUT_JIFFIES);
 
			remove_wait_queue (&pool->waitq, &wait);
			goto restart;
		}
		retval = NULL;
		goto done;
	}
 
	clear_bit (0, &page->bitmap [0]);
	offset = 0;
ready:
	page->in_use++;
	retval = offset + page->vaddr; //返回虚拟地址
	*handle = offset + page->dma; //相对DMA地址
#ifdef	CONFIG_DEBUG_SLAB
	memset (retval, POOL_POISON_ALLOCATED, pool->size);
#endif
done:
	spin_unlock_irqrestore (&pool->lock, flags);
	return retval;
}

一个简单的使用DMA 例子

示例:下面是一个简单的使用DMA进行传输的驱动程序,它是一个假想的设备,只列出DMA相关的部分来说明驱动程序中如何使用DMA的。

函数dad_transfer是设置DMA对内存buffer的传输操作函数,它使用流式映射将buffer的虚拟地址转换到物理地址,设置好DMA控制器,然后开始传输数据。
int dad_transfer(struct dad_dev *dev, int write, void *buffer, 
                size_t count) 
{ 
   dma_addr_t bus_addr; 
   unsigned long flags; 
 
   /* Map the buffer for DMA */ 
   dev->dma_dir = (write ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); 
   dev->dma_size = count;
  //流式映射,将buffer的虚拟地址转化成物理地址
   bus_addr = pci_map_single(dev->pci_dev, buffer, count, 
                             dev->dma_dir); 
   dev->dma_addr = bus_addr; //DMA传送的buffer物理地址
 
   //将操作控制写入到DMA控制器寄存器,从而建立起设备 
   writeb(dev->registers.command, DAD_CMD_DISABLEDMA); 
 //设置传输方向--读还是写
   writeb(dev->registers.command, write ? DAD_CMD_WR : DAD_CMD_RD);  
   writel(dev->registers.addr, cpu_to_le32(bus_addr));//buffer物理地址 
   writel(dev->registers.len, cpu_to_le32(count)); //传输的字节数
 
   //开始激活DMA进行数据传输操作 
   writeb(dev->registers.command, DAD_CMD_ENABLEDMA); 
   return 0; 
}

函数dad_interrupt是中断处理函数,当DMA传输完时,调用这个中断函数来取消buffer上的DMA映射,从而让内核程序可以访问这个buffer。
void dad_interrupt(int irq, void *dev_id, struct pt_regs *regs) 

{

  struct dad_dev *dev = (struct dad_dev *) dev_id; 

 

  /* Make sure it's really our device interrupting */ 

 

  /* Unmap the DMA buffer */ 
  pci_unmap_single(dev->pci_dev, dev->dma_addr, dev->dma_size, 
       dev->dma_dir); 

 

  /* Only now is it safe to access the buffer, copy to user, etc. */ 
  ... 
}

函数dad_open打开设备,此时应申请中断号及DMA通道。
int dad_open (struct inode *inode, struct file *filp) 

{

  struct dad_device *my_device; 

 

  // SA_INTERRUPT表示快速中断处理且不支持共享 IRQ 信号线
  if ( (error = request_irq(my_device.irq, dad_interrupt, 
                            SA_INTERRUPT, "dad", NULL)) ) 
      return error; /* or implement blocking open */ 

 

  if ( (error = request_dma(my_device.dma, "dad")) ) { 
      free_irq(my_device.irq, NULL); 
      return error; /* or implement blocking open */ 
  } 

 

  return 0; 
}

在与open 相对应的 close 函数中应该释放DMA及中断号。
void dad_close (struct inode *inode, struct file *filp) 

{

  struct dad_device *my_device; 
  free_dma(my_device.dma); 
  free_irq(my_device.irq, NULL); 
  ……
}

函数dad_dma_prepare初始化DMA控制器,设置DMA控制器的寄存器的值,为 DMA 传输作准备。
int dad_dma_prepare(int channel, int mode, unsigned int buf, 
                  unsigned int count) 

{

  unsigned long flags; 

 

  flags = claim_dma_lock(); 
  disable_dma(channel); 
  clear_dma_ff(channel); 
  set_dma_mode(channel, mode); 
  set_dma_addr(channel, virt_to_bus(buf)); 
  set_dma_count(channel, count); 
  enable_dma(channel); 
  release_dma_lock(flags); 

 

  return 0; 
}

函数dad_dma_isdone用来检查 DMA 传输是否成功结束。
int dad_dma_isdone(int channel) 
{ 
   int residue; 
   unsigned long flags = claim_dma_lock (); 
   residue = get_dma_residue(channel); 
   release_dma_lock(flags); 
   return (residue == 0); 
}

更多推荐

Linux内核DMA机制